I’m an assistant professor in Statistics at the Mathematical Institute of Leiden University, and a guest fellow at the Leiden University Medical Center and at the Princess Máxima Center for Pediatric Oncology. I’m a member of the DASPO research group.

Office: 221, Snellius building.
E-mail: svdpas at math dot leidenuniv dot nl

Research interests
Regression trees and forests; Sparsity; Causality; Bayesian nonparametrics; Nonparametric regression; Community detection; Survival analysis; Competing risks.

Reading group causality
Information and schedule available here.

Google Scholar


14. Posterior Concentration for Bayesian Regression Trees and their Ensembles. [pdf] (with Veronika Rocková)


13. I.F. Groeneveld, P.H. Goossens, I. van Braak, S. van der Pas, J.J.L. Meesters, R.D. Rambaran Mishre, H.J. Arwert, T.P.M. Vliet Vlieland (2018). Patients’ outcome expectations and their fulfilment in multidisciplinary stroke rehabiliation. Annals of Physical and Rehabilitation Medicine. [in press]

12. S.L. van der Pas, A.W. van der Vaart (2018). Bayesian community detection. Bayesian Analysis 13 (3), 767-796. [pdf]

11. A. Tomsic, Y.L. Hiemstra, S.L. van der Pas, H. Putter, M.I.M. Versteegh, T.J. Brakel, N.A. Marsan, R.J.M. Klautz, M. Palmen (2018). Early and long-term outcomes of mitral valve repair for Barlow’s disease: a single-centre 16-year experience. Interactive CardioVascular and Thoracic Surgery 26, 783-789. [pdf]

10. S. van der Pas, R. Nelissen, M. Fiocco (2018). Different competing risks models for different questions may give similar results in arthroplasty registers in the presence of few events. Acta Orthopaedica 89 (2), 145-151. [pdf]

9. S. van der Pas, P. Grünwald (2018). Almost the best of three worlds: risk, consistency and optional stopping for the switch criterion in nested model selection. Statistica Sinica 28, 229-253. [pdf]

8. B.W. Schreurs, S.L. van der Pas (2018). No benefit of arthroscopy in subacromial shoulder pain. The Lancet 391 (10118), 289-291. [pdf]

7. S.L. van der Pas, V. Rocková (2017). Bayesian Dyadic Trees and Histograms for Regression. Advances in Neural Information Processing Systems 30, 2089-2099. [pdf]

6. S. van der Pas, B. Szabó and A. van der Vaart (2017). Uncertainty quantification for the horseshoe (with discussion). Bayesian Analysis 12 (4), 1221-1274. [pdf]

5. S. van der Pas, B. Szabó and A. van der Vaart (2017). Adaptive posterior contraction rates for the horseshoe. Electronic Journal of Statistics 11 (2), 3196-3225. [pdf]

4. S.L. van der Pas, R.G.H.H. Nelissen and M. Fiocco (2017). Patients with staged bilateral total joint arthroplasty in registries: immortal time bias and methodological options. Journal of Bone & Joint Surgery – American Volume 99 (15), p e82. [pdfLink to online journal edition here. Copyright JBJS. 

3. S.L. van der Pas, J.-B. Salomond and J. Schmidt-Hieber (2016). Conditions for posterior contraction in the sparse normal means problem. Electronic Journal of Statistics 10, 976-1000. [pdf]

2. S.L. van der Pas, B.J.K Kleijn and A.W. van der Vaart (2014). The horseshoe estimator: posterior concentration around nearly black vectors. Electronic Journal of Statistics 8 (2), 2585-2618. [pdf]

1. S. van der Pas (2014). The normal road to geometry: in Euclid’s Elements and the mathematical competence of his audience. The Classical Quarterly 64, 558-573. [pdf] Link to online journal edition here. Copyright The Classical Association. 


The R package `horseshoe’ is available on CRAN here, or can be installed by typing install.packages(“horseshoe”) in the R terminal. The manual contains some examples.

Selected talks


  • `Bayesian dyadic trees and histograms for regression’ [poster(NIPS, Long Beach, December 2017)
  • `Posterior concentration for Bayesian regression trees and their ensembles’ [slides(Workshop on Bayesian and PAC-Bayesian methods, Paris, November 2017)
  • `Competing risks with time dependent clustering’ [slides] (PTA, London, September 2016)
  • `How many needles in the haystack? Adaptive inference and uncertainty quantification for the horseshoe’ [slides(JSM, Chicago, August 2016)
  • `The horseshoe and more general sparsity priors’ [slides] (EYSM, Prague, September 2015)
  • `Bayesian community detection’ [slides] (JSM, Seattle, August 2015)
  • `The horseshoe estimator: posterior concentration around nearly black vectors’ [slides] (ERCIM, Pisa, December 2014)


  • `Conditions for posterior contraction in the sparse normal means problem’ [slides] (Bayes Club, Amsterdam, April 2016)
  • `The horseshoe prior for nearly black vectors’ [slides] (Bayes Club, Amsterdam, April 2014)


  • `Orgaanalarm’ [slides] (Leiden Science Family Day, October 2018)
  • `Hoe lang duurt het tot…?’ [slides]  (De Leidsche Flesch lunch seminar, Leiden, May 2016)
  • `Almost the best of three worlds’ [slides] (FMF Axioma symposium, Groningen, June 2014)
  • `Hypothese toetsen en het switch-criterium’  [slides(De Leidsche Flesch lunch seminar, Leiden, April 2014)