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The Stochastic Block Model

Undirected graph without self-loops, of n nodes.

Observe adjacency matrix A:

A =

0
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0 1 1 0 1 0 0
1 0 0 1 0 0 1
1 0 0 0 1 1 1
0 1 0 0 1 1 1
1 0 1 1 0 0 0
0 0 1 1 0 0 1
0 1 1 1 0 1 0
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The Stochastic Block Model

K classes.

Latent class labels: Z = (Z1, . . . ,Zn), Zi 2 {1, . . . ,K}. For i < j :

P(Aij = 1 | Z i = a,Z j = b) = Pab

where P is a symmetric K ⇥ K -matrix of probabilities.

A =

0
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The Stochastic Block Model

K classes.

Latent class labels: Z = (Z1, . . . ,Zn), Zi 2 {1, . . . ,K}. For i < j :

P(Aij = 1 | Z i = a,Z j = b) = Pab

where P is a symmetric K ⇥ K -matrix of probabilities.

The Zi are generated according to

P(Zi = a) = ⇡a,

for some ⇡ 2 RK such that
PK

a=1 ⇡a = 1.

Goal: recovery of labels.
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Other approaches

I Spectral clustering (e.g. Rohe, Chatterjee and Yu (2011), Jin
(2015), Sarkar and Bickel (2015), Lei and Rinaldo (2015))

I Largest Gaps algorithm (Channarond, Daudin and Robin (2012))

I Newman-Girvan modularity (e.g. Newman and Girvan (2004))

I Likelihood modularity (Bickel and Chen (2009), Zhao, Levina and
Zhu (2012))

Bayesian approach (e.g. Nowicki and Snijders (2001), McDaid et al.
(2013)): theoretical results lacking.
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The Bayesian modularity

The prior on the vector of class labels z:

⇡ ⇠ Dir

✓
K + 3

2
, . . . ,

K + 3
2

◆

n1, . . . , nK | ⇡ ⇠ Multinomial(n,⇡)

Given n1, . . . , nK , the labelling z is then drawn as a random
ordering of the following sequence:

1, . . . , 1| {z }
n1

, 2, . . . , 2| {z }
n2

, . . . ,K , . . . ,K| {z }
nK

.

Independently:

Pab ⇠ Beta

�1
2 ,

1
2
�
, 1  a  b  K .
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The Bayesian modularity

Use the posterior mode as estimator of Z .

Let

na(z) = number of nodes in class a;
nab(z) = maximum possible number of edges

between classes a and b;
Oab(z) = observed number of edges

between classes a and b.
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The Bayesian modularity

The Bayesian modularity is given by

QB(z) =
1
n2

X

ab

log B(Oab(z) + 1
2 , nab(z)� Oab(z) + 1

2)

+
1
n2

KX

a=1

log
�
⇣

na(z) + K+3
2

⌘

�(na(z) + 1)
.

The Bayesian MAP-estimator is:

bz = arg max
z

QB(z).
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Weak and strong consistency

An estimator is weakly consistent if the fraction of misclassified
nodes goes to zero in probability.

An estimator is strongly consistent if the number of
misclassified nodes goes to zero in probability.
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Strong consistency of the Bayesian modularity

Theorem [strong consistency]

If P is symmetric, every pair of rows of P is different, 0 < P < 1,
and ⇡ > 0, then the MAP classifier bz = arg maxz QB(z) is
strongly consistent if the expected degree is of larger order
than (log n)2.

Full posterior useful for
I uncertainty quantification?
I estimating K ?

9 / 17



Strong consistency of the Bayesian modularity

Theorem [strong consistency]

If P is symmetric, every pair of rows of P is different, 0 < P < 1,
and ⇡ > 0, then the MAP classifier bz = arg maxz QB(z) is
strongly consistent if the expected degree is of larger order
than (log n)2.

Full posterior useful for
I uncertainty quantification?
I estimating K ?

9 / 17



Implementation

I McDaid et al. (2013): allocation sampler, ⇠ 10.000 nodes

I Côme and Latouche (2014): greedy inference algorithm

I tabu search (Glover, 1989)
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Example: Zachary’s karate club
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Example: Zachary’s karate club
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Example: Zachary’s karate club
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K = 2
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K = 4
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Conclusions

I Strongly consistent community detection with a Bayesian
approach is possible, provided the expected degree is of
larger order than (log n)2.

I Encourages further investigation into the full potential of
the full posterior.
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