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Proposition 7.1 (Non-uniqueness of graph structures) Consider a random vec-
tor X = (X1,...,Xg) with distribution Px that has a density with respect to Lebesgue
measure and assume it is Markovian with respect to G. Then there exists an SCM
€ = (S, PN) with graph G that entails the distribution Px.

C.9 Proof of Proposition 7.1

Proof. Let Ny,...,N; be independent and uniformly distributed between 0 and 1.
We then define X; := f;(Xpa . N;) with

filpaj,n;) == F;H‘PAJ:WJ_ (n)) (C4)

where F~ |'H _pa is the generalized inverse cumulative distribution function from
JIEA =Pa;

X; given PA j=pa;. The generalized inverse cumulative distribution function of a
random variable Y is defined as F}T' (a) :==inf{y € R : Fy(y) > a}. Equation (C.4)
guarantees that in the constructed SCM, the conditional X;|PA j=ha; has the cor-
rect distribution. The statement then follows from the Markov factorization, Defi-
nition 6.21(iii). O

6.5.1 Markov Property

The Markov property is a commonly used assumption that forms the basis of
graphical models. When a distribution is Markovian with respect to a graph, this
eraph encodes certain independences in the distribution that we can exploit for ef-
ficient computation or data storage. The Markov property exists for both directed
and undirected graphs, and the two classes encode different sets of independences

Definition 6.21 (Markov property) Given a DAG G and a joint distribution P,
this distribution is said to satisfy
(i) the global Markov property with respect to the DAG G if

ALgB|C = A LB|C

for all disjoint vertex sets A, B, C (the symbol g denotes d-separation —
see Definition 6.1), 7

(ii) the local Markov property with respect to the DAG G if each variable is
independent of its non-descendants given its parents, and

(iii) the Markov factorization property with respect to the DAG G if

d
p(xl:p{n..‘..xd]:th,“mﬁ’].
=1

For this last property, we have to assume that Px has a densiry p; the fac-
tors in the product are referred to as causal Markov kernels describing the

conditional distributions Py p.c.



7.1 Structure Identifiability

7.1.1 Faithfulness

If the distribution Px is Markovian and faithful with respect to the underlying DAG
G, we have a one-to-one correspondence between d-separation statements in the
graph G° and the corre sponding conditional independence statements in the distri-
bution. All graphs outside the correct Markov equivalence class of G° can therefore
be rejected because they impose a set of d-separations that does not equal the set
of conditional independences in Px. Since both the Markov condition and faithful-
ness put restrictions only on the conditional independences in the joint distribution,
it is also clear that we are not able to distinguish between two Markov equivalent
eraphs, that is, between two graphs that entail exactly the same set of conditional

independences (see for example Figure 6.4 on page 103). Summarizing, under

the Markov condition and faithfulness, the Markov equivalence class of G 0 repre-
sented by CPDAG(G"), is identifiable from Px [e.g.. Spirtes et al., 2000].

Lemma 7.2 (Identifiability of Markov equivalence class) Assume that Px is
Markovian and faithful with respect to G°. Then, for each graph G € CPDAG(G"),
we find an SCM that entails the distribution Ps. Furthermore, there is no graph G
with G ¢ CPDAG(GY), such that Px is Markovian and faithful with respect to G.

Figure 6.4 shows an example of two Markov equivalent graphs (center and left).
The graphs share the same skeleton and both of them have only one immorality:
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Figure 6.4: Two Markov equivalent DAGs (left and center); these are the only two DAGs
in the corresponding Markov equivalence class that can be represented by the CPDAG on
the right-hand side.

Definition 6.33 (Faithfulness and causal minimality) Consider a distribution
P oand a DAG G.

(i) PX is faithful to the DAG G if
A LB|C AlgB|C

for all disjoint vertex sets A, B, C.

(ii) A distribution satisfies causal minimality with respect to G if it is Markovian
with respect to G, but not to any proper subgraph of G.

Part (i) posits an implication that is the opposite of the global Markov condition

AlgB|C = A LB|C,



7.1.2 Additive Noise Models

Definition 7.3 (ANMs) We call an SCM € an ANM if the structural assignments

are of the form
Xj = fj{PAJ) + N,

(7.1)

that is, if the noise is additive. For simplicity, we further assume that the functions
f; are differentiable and the noise variables N; have a strictly positive density.”

Condition

DAG

Type of structural assignment on funct. | identif See
(General) SCM: X;:= _f}-{Xp,\j,N}-} — X Prop. 7.1
ANM: Xj:= f}-[Xp,\J_]l +Nj nonlinear v Thm. 7.7(i)
CAM: X;:= E,;.Ep,\j fix(Xg) +N; | nonlinear v Thm. 7.7(ii)
Linear Gaussian: Xj:= Ekef"'ﬁjﬁ_ﬁ-x;; +Nj linear X Problem 7.13
Lin. G., eq. error var.: X; 3=Ekef"hjﬁjkxk +N; linear v Prop. 7.5

Given the restricted class of SCMs described in (7.1), do we obtain full structure
identifiability? Again, the answer is negative. Theorem 4.2 and Problem 7.13
show that if the distribution is induced by a linear Gaussian SCM, for example,
we cannot necessarily recover the correct graph. It turns out, however, that this
case is exceptional in the following sense. For almost all other combinations of
functions and distributions, we obtain identifiability. All the nonidentifiable cases
have been characterized [Zhang and Hyviirinen, 2009, Peters et al., 2014]. Another
non-identifiable example different from the linear Gaussian case is shown in the
right plot in Figure 4.2. Its details can be found in Peters et al. [2014, Example 25].
Table 7.1 shows some of the known identifiability results.



7.2 Methods for Structure Identification

We have seen several assumptions that lead to (partial) identifiability of the causal
structure. The purpose of this section is to show how these assumptions can be
exploited to provide estimators of the underlying graph from a finite amount of
data (see Figure 7.1 for two examples). We provide an overview of methods and
try to focus on their ideas. There is a large pool of methods, and we believe that
future research needs to show which of these methods will prove to be most useful
in practice. We nevertheless try to highlight some of the methods™ potential prob-
lems and most crucial assumptions. Although some papers study the consistency
of the presented methodology, we omit most of those results and present ideas

7.2.1 Independence-Based Methods
7.2.2 Score-Based Methods
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7.2.1 Independence-Based Methods

Estimation of Skeleton Most independence-based methods first estimate the
skeleton, that is, the undirected edges, and orient as many edges as possible after-

ward. For the skeleton search, the following lemma is useful to know [see Verma
and Pearl, 1991, Lemma 1].

Lemma 7.8 The following two statements hold.

(i) Two nodes X.Y in a DAG (X,E) are adjacent if and only if they cannot be
d-separated by any subset S TV '\ {X .Y }.

(ii) Iftwo nodes X .Y ina DAG (X, &) are not adjacent, then they are d-separated

by either PAy or PAy.

Using Lemma 7.8(1), we have that if two variables are always dependent, no mat-
ter what other variables one conditions on, these two variables must be adjacent.
This result is used in the IC algorithm [Pearl, 2009] and in the SGS algorithm
[Spirtes et al., 2000]. For each pair of nodes (X,Y ), these methods search through
all possible subsets A C X\ {X,Y } of variables neither containing X nor ¥ and
check whether X and Y are d-separated given A. After all those tests, X and Y are
adjacent if and only if no set A was found that d-separates X and Y.

Searching through all possible subsets A does not seem optimal, especially if
the graph is sparse. The PC algorithm [Spirtes et al., 2000] starts with a fully
connected undirected graph and step-by-step increases the size of the conditioning
set A, starting with #A = 0. At iteration X, it considers sets A of size #A =k,
using the following neat trick: to test whether X and ¥ can be d-separated, one
only has to go through sets A that are subsets either of the neighbors of X or of
the neighbors of ¥; this idea is based on Lemma 7.8(ii) and clearly improves th}e
computation time, especially for sparse graphs.



7.2.1 Independence-Based Methods

Orientation of Edges Lemma 6.25 suggests that we should be able to orient the
immoralities (or v-structures) in the graph. If two nodes are not directly connected
in the obtained skeleton, there is a set that d-separates these nodes. Suppose that
the skeleton contains the structure X — Z — ¥ with no direct edge between X and
Y further, let A be a set that d-separates X and Y. The structure X —Z —Y is
an immorality and can therefore be oriented as X — Z « Y if and only if Z ¢ A.
After the orientation of immoralities, we may be able to orient some further edges
in order to avoid cycles, for example. There is a set of such orientation rules that
has been shown to be complete and is known as Meek’s orientation rules [Meek,

1995].

Lemma 6.25 (Graphical criteria for Markov equivalence) Two DAGs Gy and G
are Markov equivalent if and only if they have the same skeleton and the same
immoralities.



Independence-Based Methods

7.2.1 Independence-Based Methods

Conditional Independence Tests In the three preceding paragraphs we have as-
sumed the existence of an independence oracle that tells us whether a specific (con-
ditional) independence is or is not present in the distribution. In practice, however,
we have to infer this statement from a finite amount of data. This comes with two
major challenges: (1) All causal discovery methods that are based on conditional

1). Statistical significance tests for conditional
iIndependence are asymmetric.

2). Nonparametric conditional independence
tests are difficult to perform with finite data.

If the variables are assumed to follow a Gaussian distribution, we can test for
vanishing partial correlation (see Appendices A.1 and A.2). Under faithful-
ness, the Markov equivalence class of the underlying DAG becomes identifiable
(Lemma 7.2) and indeed, in the Gaussian setting, the PC algorithm with a test for
vanishing partial correlation provides a consistent estimator for the correct CPDAG



7.2.1 Independence-Based Methods



